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1 Objectives of HVTN 505

HVTN 505 is a randomized, double-blind, placebo-controlled Phase IIb preventative HIV
vaccine trial, conducted in Ad5 neutralizing antibody negative (titers ≤ 18), circumcised,
men and male-to-female (MTF) transgender persons who have sex with men, in the United
States, ages 18-50 years, who satisfy criteria for being at high risk for acquiring HIV-1
infection.

Following the decision to halt study vaccinations after the April 22, 2013 DSMB review,
the study transitioned into an extended follow-up phase. At the second interim analysis
of the extended follow-up phase, no significant difference was found in the HIV-1 infection
rate vaccine vs. placebo, and there was low conditional power to detect an increased rate of
infection in the vaccine arm. Based on these results, the protocol was modified again (version
6) to reduce the intensity of study visits; only annual visits will be conducted after Month
24, and HIV-1 infected participants will only have three post-infection visits (at weeks 2, 4,
and 24 post-infection diagnosis; PD). This document describes statistical methods that will
be used to analyze data collected under protocol version 6.

1.1 Primary Objective

1. To evaluate the rate of study dropout in vaccine and placebo recipients

2. To evaluate the effect of the VRC DNA/rAd5 vaccine regimen on the rate of HIV-1
acquisition compared to placebo

1.2 Exploratory Objectives

1. To evaluate the effect of the VRC DNA/rAd5 vaccine regimen on viral load (VL) at
the time of HIV-1 infection diagnosis

2. To evaluate the effect of the VRC DNA/rAd5 vaccine regimen on CD4+ T cell count
and disease progression course

3. To evaluate HIV-1-specific and Ad5 vector-specific immune responses induced by the
vaccine regimen

4. To evaluate the impact of viral genetic variation, host genetic factors, prophylactic
ARV use, and other participant covariates including self-reported risk behavior on
vaccine effects on study endpoints

5. To describe the prevalence of drug (TDF and FTC) resistance mutations after HIV-1
seroconversion among vaccine and placebo recipients reporting prophylactic ARV use
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6. To evaluate immune correlates of risk of HIV-1 infection among vaccine recipients and
(possibly) placebo recipients

2 Follow-Up Period

The goal is to follow all HIV-1 uninfected participants for 60 months post-enrollment. This
will include 48 months of clinic visits plus a participant health contact at Month 60. Under
version 4 of the protocol, participants were followed for 24 months post-enrollment. Under
protocol version 5, participants who had previously completed 24 months of follow-up were
brought back to the study sites to begin the extended follow-up.

Participants who are diagnosed with HIV-1 infection will be followed for 6 months post-
infection diagnosis. Under version 4 of the protocol, HIV-1 infected participants were followed
for 18 months post-enrollment. Participants diagnosed under version 5 of the protocol were
followed only for 6 months post-infection diagnosis. Under version 6, infected participants
will still be followed through 6 months post-infection, but the number of visits has been
reduced to three: at weeks 2, 4, and 24 post-infection.

The analyses described in this document will use data from one of two follow-up periods for
HIV-1 uninfected participants, as specified in detail below: 1) 0-24 months follow-up, or 2)
including all follow-up through Month 48. Analyses of HIV-1 infected participants will use
all available post-infection follow-up: 18 months for participants diagnosed under version 4
of the protocol (or data through the last post-infection visit), and 6 months for participants
diagnosed under versions 5 or 6.

3 Study Populations

We define six study populations that are analyzed for addressing various study objectives.
This terminology is used throughout the SAP.

Safety Population: Randomized subjects who receive at least one study injection of vaccine
of placebo, i.e. all enrolled subjects

Modified Intent-to-Treat (MITT) Population: Subjects in the Safety Population who
are HIV-1 negative on the date of first injection (Day 0)

Week 28+ Population: Subjects in the MITT Population who have an HIV-1 negative
test result at or after Day 196, or their first positive HIV-1 test at or after Day 196



6

Immunogenicity Population: MITT subjects who have an HIV-1 negative test result at
Month 7

Immunogenicity Subcohort: MITT subjects in the Immunogenicity Population for whom
Month 7 immune responses are measured.

MITT Infected Population: MITT subjects who have a confirmed diagnosis of HIV-1
infection during the follow-up period through the Month 48 visit.

Week 28+ Infected Population: MITT-Infected subjects whose date of infection diag-
nosis is on or after Day 196 through their Month 48 visit.

Pre-Week 28 Infected Population: MITT-Infected subjects whose date of infection
diagnosis is before Day 196.

The MITT Population and the Safety Population are very similar but not identical to a
fully intention-to-treat population; the Safety Population differs by excluding randomized
subjects who do not enroll; and the MITT population is the subset of the Safety Population
that also excludes enrolled subjects discovered later to be HIV-positive by Day 0. Because
of blinding and the brief length of time between randomization and enrollment– typically no
more than 4 working days according to the HVTN Manual of Operations (HVTN MOP)– we
expect almost all randomized subjects to be in the Safety Population. Given that eligibility
for the study requires recent evidence of being HIV-1 uninfected (within 56 days prior to
enrollment), we expect almost all enrolled subjects to also be in the MITT Population.

Since enrollment is concurrent with receiving the first vaccination, all participants will have
received one vaccination and therefore are part of the Safety Population and will provide
some safety data.

The primary analyses will consider all MITT infections. Week 28+ infections were the pri-
mary infection endpoints under version 4 of the protocol, because earlier “inter-current”
infections would likely have occurred prior to the rAd5 vector vaccine/placebo boost and
might have become established before the development of a complete vaccine-induced im-
mune response. Under versions 5 and 6 of the protocol, primary interest lies in all HIV-1
infections, and this motivates the focus on all MITT infections. Supportive secondary anal-
yses will restrict attention to Week 28+ infections.

Analyses of immunogenicity endpoints will be conducted in the Immunogenicity Population.
The primary immunogenicity time-point is the Month 7 visit.
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4 Diagnosis of HIV-1 Infections

The primary endpoint is diagnosis of HIV-1 infection during the follow-up period; additional
endpoints are assessed in study participants diagnosed with HIV-1 infection. The occurrence
of HIV-1 infection will be detected through HIV-1 ELISA tests administered at study visits
at Months 6, 9, 12, 15, 18, 21, 24, 36, and 48 post-enrollment (see protocol Appendix B).
Participants found to have evidence for HIV-1 infection will have additional testing using
western blot and RNA PCR to confirm the diagnosis of HIV-1 infection.

The vaccine-induced immune responses may lead to false positive HIV-1 tests and difficulty
in interpretation. Therefore the study utilizes a blinded Endpoint Adjudicator to review all
data that support diagnoses of HIV-1 infection. Only HIV-1 infection cases confirmed by
the Adjudicator will be counted as HIV-1 infections in the analysis.

4.1 Date of Infection Diagnosis

The Adjudicator will define the date of diagnosis based on his/her judgement of all of the
available diagnostic data. This date is assigned based only on diagnostic results collected
prospectively over time; it does not consider the results of HIV-specific PCR tests that may
be performed on earlier samples that are tested later. The date of infection diagnosis will
be used as the event-date for time-to-event analyses of HIV-1 infection diagnosis and as the
time origin for the analysis of post-infection endpoints.

4.2 ‘Look-back’ Procedure for HIV-Specific PCR Testing

For all subjects diagnosed with HIV-1 infection, the sample available at the nearest date
before the diagnosis date will be tested using HIV-specific PCR. If it is positive, then the
sample at the second nearest date before the diagnosis date will be tested using HIV-specific
PCR. This procedure will be repeated until an HIV-specific PCR negative test result is
obtained or until a test is done for a Day 0 sample. We define the ‘earliest post-infection
time-point’ (EPIT) as the earliest date for which an HIV-specific PCR test is positive.

5 Timing of Final Analysis

The final analysis will take place soon after the last enrolled participant has reached the
end of the Month 48 visit window; we refer to this as the final evaluation time (FET). As
described in the monitoring plan in Section 8, the final analysis make take place earlier based
on sequential monitoring of study dropout and the vaccine effect on HIV-1 acquisition.
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6 Endpoints

6.1 Primary Endpoints

For each study endpoint defined below, we include the population in which it is assessed.
Assessments of viral load (VL) and CD4+ T cell endpoints in HIV-1 infected subjects will
exclude values measured after antiretroviral therapy (ART) initiation, because ART will
typically have a strong effect on these biomarkers. Methods that assess VL endpoints that
use actual values (not rank-based methods) will use the following approach to handle VL
endpoints that are left- or right-censored by the quantification limits (40 to 10,000,000) of the
primary VL assay. Left-censored values will be assigned value log10(20) and right-censored
values will be assigned value log10(10, 000, 000) = 7.

Study dropout is defined as termination from the study. Participants who terminate will be
considered to have dropped out at the date of their last visit.

Primary Endpoint 1 (MITT Population): Study dropout through the Month 48 visit

Primary Endpoint 2 (MITT Population): HIV-1 infection diagnosed after Day 0
through the Month 24 visit

Primary Endpoint 3 (MITT Population): HIV-1 infection diagnosed after Day 0
through the Month 48 visit

6.2 Exploratory Endpoints

This section lists endpoints for several exploratory objectives of key interest. The full list of
exploratory objectives is given in Section 1.2.

Exploratory Endpoint 1 (MITT Infected Population): Diagnostic VL, defined as
that obtained from the sample drawn at the visit at which a participant is diagnosed with
HIV-1 infection

Exploratory Endpoint 2 (MITT Infected Population): Measures of HIV-1 disease
progression including: CD4+ T cell counts in HIV-1 infected volunteers; ART initiation;
HIV-1 related clinical events and death

Under protocol version 6, CD4+ T cell counts are measured at Week 2 PD and ART initiation
is assessed at Weeks 2, 4, and 24 PD (see protocol Appendix D). Since primary interest is in
studying ART initiation as an indicator of disease progression, participants initiating ART
before Week 10 PD will be censored at the time of ART initiation.

If and when HIV-1 infected participants experience an HIV-1 related clinical event, or die for
any reason, will be recorded. HIV-1 related clinical events are defined as any documented
AIDS-defining condition in the CDC 2008 definition (listed in Appendix A of Schneider
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et al., 2008). The protocol chair and co-chairs will review each HIV-related clinical event
and certify its acceptance as an endpoint for analysis. Other disease progression related
events (such as cardiac, hepatic, renal, metabolic, and non-AIDS malignancies) will also be
catalogued and analyzed.

Exploratory Endpoint 3 (Immunogenicity Population): HIV-1 specific and rAd5
vector specific immune responses measured using

• HIV-1-specific and rAd5-specific unfractionated IFN-γ ELISpot

• HIV-1-specific and rAd5-specific Intracellular cytokine staining (ICS)

• HIV-1-specific and rAd5-specific epitope mapping

• HIV-1 and rAd5 binding ELISA

• HIV-1 and rAd5 neutralization assay

The primary time-point for immunogenicity assessment is the Month 7 visit, 4 weeks after
the rAd5 boost, and optionally at additional immunogenicity time points.

Exploratory Endpoint 4 (MITT Population): Host genetics

Host genetic factors including HLA alleles and KIR genes will be measured in all subjects
in the MITT Infected Population and potentially also in the Immunogenicity Subcohort.

Exploratory Endpoint 5 (MITT Population): HIV-1 genetics

Full genome HIV-1 sequences will be measured from each subject in the MITT Infected
Population.

Exploratory Endpoint 7 (MITT Population): Participant risk behavior and prophy-
lactic ARV use

Participant risk behavior and prophylactic ARV use as measured by behavioral risk factor
and prophylactic ARV use questionnaire as well as plasma ARV drug level testing. The plan
for plasma ARV drug level testing is described in Section 7.9.

7 Statistical Analyses for Primary and Exploratory End-

points

All vaccine activity and efficacy endpoints will be evaluated in the MITT population. Pri-
mary analyses will include all infections occurring in the MITT population, while supportive
analyses will include only Week 28+ infections. Specifically, for analyses including only
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Week 28+ infections, analyses of post-infection vaccine activity endpoints will only evaluate
HIV-1 infections diagnosed at or following Day 196 and the analysis of HIV-1 infection will
right-censor HIV-1 infection events diagnosed prior to Day 196.

Analyses of HIV-1 acquisition will be performed using either follow-up through Month 24, or
all follow-up through Month 48. Correspondingly, these analyses will target estimation and

inference of VEMITT(24), the multiplicative reduction in the hazard rate of HIV-1 infection

(vaccine versus placebo) by the Month 24 visit, and estimation and inference of VEMITT(t),
the multiplicative reduction by time t post-enrollment for all times through to the Month 48

study visit. Analyses of VEMITT(24) will right-censor participants at the end of the Month
24 visit window, or, for participants who drop out prior to the Month 24 visit, at the date

of the last available HIV test result. Analyses of VEMITT(t) will right-censor participants
at time t, or, for participants who drop out prior to time t, at the date of the last available
HIV test result.

Similarly, analyses of study dropout will be performed using either follow-up through Month
24, or all follow-up through Month 48. Analyses of dropout within 24 months will right-
censor participants diagnosed with HIV-1 infection at the date of diagnosis and participants
not dropping out or becoming infected at the end of the Month 24 visit window. Analyses of
dropout including all available follow-up will right-censor participants diagnosed with HIV-1
infection at the date of diagnosis and participants not dropping out or becoming infected at
the date of the last visit.

7.1 Behavioral risk score

Several analyses will make use of a baseline behavioral risk score for predicting HIV-1 in-
fection risk. This score was developed using all data prior to study unblinding, using a
multivariable Cox proportional hazards model and an all-subsets model selection procedure.
The model includes two variables from the baseline behavioral risk score, which queried
participants about risk behavior over the 3 months prior to enrollment: an indicator that
the number of male sexual partners is greater than three and an indicator of unprotected
receptive anal sex. The risk score is a weighted sum of these risk variables, each weighted
by the estimated hazard ratio (HR). The risk score takes a value of 0 if a participant has
neither risk factor, 1 if they have both, and an intermediate value (0.46 or 0.54) if they have
one or the other.

Whereas all analyses that account for behavioral risk will use this baseline behavioral risk
score, some analyses will also use the post-baseline behavioral risk score measured at post-
infection visits. The behavioral risk score at a post-baseline visit is defined in the same way
as for the baseline score, but uses the recorded values of the risk score variables at the given
visit.
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7.2 Primary Endpoint (Study Dropout)

7.2.1 Primary analysis

The timing of study dropout will be described for each treatment group using a cumulative
incidence curve of the time between first injection and the date of dropout. This curve will
be estimated by one minus the Kaplan-Meier estimator. The incidence of study dropout in
each treatment group will be estimated by dividing the number of dropouts by the amount of
person-time “at risk”, and exact methods will be used to calculate 95% confidence intervals.
To test for a difference in dropout rates between treatment groups, a score test will be used
in the context of a Cox proportional hazards model. The proportional hazards assumption
will be tested using the Grambsch and Therneau (1994) test based on Schoenfeld residuals;
if the assumption is violated additional Cox regression modeling analyses will be performed
that include time-dependent interactions between the natural logarithm of failure time and
treatment arm.

To evaluate differences in dropout rates pre- vs. post-unblinding, the above analyses will
be performed separately for the pre-unblinding period (censoring all subjects still “at risk”
on April 22, 2013, the date of unblinding) and for the post-unblinding period (“starting the
clock” for subjects on April 23, 2013). To test for a difference in dropout rates pre- vs.
post-unblinding, a score test for the time-dependent indicator of post-unblinding follow-up
time (an indicator as to whether the follow-up time is after April 22, 2013) will be reported.
This test will be performed pooling treatment groups, and separately for each treatment
group.

The instantaneous dropout rate will also be estimated as a function of follow-up time using
the method of Gilbert et al. (2002). This analysis will be performed for both the pre-
unblinding follow-up period and for the post-unblinding follow-up period, separately for
each treatment group.

7.2.2 Secondary analysis

Secondary analyses of study dropout will restrict attention to Months 0-24 follow-up. These
analyses will inform the validity of vaccine efficacy analyses restricted to Month 0-24 follow-
up.

Other secondary analyses will assess baseline participant characteristics as predictors of
study dropout. The baseline variables considered will be age, baseline behavioral risk score,
race/ethnicity, HSV-2 serostatus, and BMI. Note that HSV-2 serostatus will not be consid-
ered if fewer than 95% of participants have measurements; this assay is specified as optional
in the protocol. These covariates will be assessed as predictors in Cox proportional hazards
models, both univariately and in the context of a multivariate model comprised of covariates
predicting dropout with significance p < 0.10 based on two-sided score tests in univariate



12

Cox models.

7.3 Primary Endpoint (HIV-1 Infection Diagnosis)

7.3.1 Primary analysis

The timing of infections will be described for each treatment group using a cumulative
incidence curve of the time between first injection and the date of HIV-1 infection diagnosis.
This curve will be estimated by one minus the Kaplan-Meier estimator.

The vaccine effect on HIV-1 acquisition will be measured using the relative risk (RR) of
HIV-1 diagnosis, defined as the hazard ratio (vaccine/placebo) in a continuous time Cox
proportional hazards model. Conditional on a pre-specified method selection step described
below, the method of Lu and Tsiatis (2008) will be used for estimating the RR with a 95%
Wald-based confidence interval, and for testing whether the RR differs from 1 with a Wald
statistic. If the pre-specified method selection step does not support use of the Lu and
Tsiatis (2008) method, the standard maximum partial likelihood estimator will be used for
estimating the RR with a 95% Wald-based confidence interval, and a log-rank test will be
used for testing whether the RR differs from 1.

Given that the vaccine and placebo groups will be compared over a time period when par-
ticipants are unblinded as to treatment assignment, the potential for confounding will be
carefully considered. Specifically, in addition to estimating the marginal HR associated with
vaccine assignment, we will also estimate the HR adjusted for potential confounding factors.
First, we will assess the extent to which baseline participant characteristics and baseline
behavioral risk score are predictive of HIV-1 infection risk. Variables that, when considered
univariately and pooled over treatment arms, predict infection risk with significance p < 0.10
based on two-sided score tests in the Cox model will be added to the Cox model relating
treatment assignment to HIV-1 infection risk. The baseline variables considered will be age,
baseline behavioral risk score, race/ethnicity, HSV-2 serostatus, and BMI. Note that HSV-2
serostatus will not be considered if fewer than 95% of participants have measurements; this
assay is specified as optional in the protocol. Both unadjusted HRs for vaccination (with-
out adjustment for the baseline covariates) and adjusted HRs (with adjustment for baseline
covariates) will be reported.

There is also the potential for confounding due to time-dependent factors such as risk behav-
iors and ARV use. However, adjustment for these factors is complicated by their differing
collection schedules, missing data over time, and measurement error. Therefore, we view
analyses that adjust for time-dependent confounders as secondary, rather than primary;
these are described below in Section 7.3.2.

As mentioned above, under certain conditions instead of using standard Cox partial likelihood
methods for estimation we will instead use the efficient estimation method of Lu and Tsiatis
(2008). The version of the method that leverages baseline subject characteristics predictive



13

of HIV-1 infection diagnosis to improve efficiency will be used, which is implemented by the
R package speff2trial evaluated in simulations by Xiaomin Lu, Michal Juraska, Rong Fu,
and Holly Janes. Implementation of the Lu and Tsiatis method divides into three steps:

1. Assume a linear model for the function f0(X1) of baseline covariates X1 (f0 is defined
in Lu and Tsiatis, 2008, expression (13)) and use all-subsets model selection to pick
the best model.

2. Assume a linear model for the function g0(X1) of baseline covariates X1 (g0 is defined
in Lu and Tsiatis, 2008) and use all-subsets model selection to pick the best model.

3. Solve the estimating equation on page 685 of Lu and Tsiatis (2008, middle panel),
which uses fitted values from the best models selected in Steps 1 and 2.

In Steps 1 and 2 separately, BIC will be used as the criterion for choosing the best model.
The key for the method to be objective is that the set of baseline covariates to consider
for the predictive model and the algorithm for selecting among them is pre-specified. The
following baseline covariates will be considered:

1. Age

2. Baseline behavioral risk score

3. Race/ethnicity

4. BMI

5. HSV-2 serostatus

6. All 2-way interactions of the above covariates

7. Square terms for age, baseline behavioral risk score, and BMI

Note that for modeling f0 and g0, as well as for modeling missingness in the primary endpoint
viral load analysis, models with 2-way interaction terms always include the main effects.

The pre-specified method selection step is as follows. To use the Lu and Tsiatis method we
require that the best treatment-arm-pooled model predicting HIV infection (based on BIC)
has a c-statistic of at least 0.85. The purpose of this step is to only use the Lu and Tsiatis
method in a scenario where the available covariates are good enough predictors of HIV
infection to render the Lu and Tsiatis method meaingfully more efficient than the standard
method that ignores baseline covariates. Simulation studies showed that scenarios with c-
statistic below 0.85 tended to have less than 1-2% efficiency gain with the Lu and Tsiatis
method. The reason to prefer the standard method in the case of no advantage for the Lu
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and Tsiatis method, is to avoid potential controversy in the unexpected but possible event
that the inferences are somewhat different via the Lu and Tsiatis and standard methods.

To assess the validity of the proportional hazards assumption of the Cox model, goodness-
of-fit tests will be performed, including the Grambsch and Therneau (1994) test based on
Schoenfeld residuals. If these diagnostics support failure of the proportional hazards as-
sumption, additional Cox regression modeling analyses will be performed that include time-
dependent interactions between the natural logarithm of failure time and treatment arm. In
addition, the nonparametric smoothing method of Durham et al. (1999) based on Schoenfeld
residuals may be used. These analyses will adjust for covariates in the same manner as the
Cox model analysis that does not include the time-dependent interactions.

An additional analysis will be considered if marginal and conditional HRs associated with
vaccination differ substantially, suggesting confounding, and if in addition the goodness-of-
fit diagnostics support failure of the proportional hazards assumption. Under this analysis,
cumulative probabilities of HIV-1 infection over time in each treatment arm, and additive
differences and ratios of these cumulative probabilities (vaccine vs. placebo), will be esti-
mated adjusted for potential confounders. In addition to the point estimates, 95% confidence
intervals about the cumulative probabilities of HIV-1 infection over time for each treatment
arm will be computed, as well as 95% confidence intervals about the additive difference
and ratios over time. The collaborative targeted maximum likelihood estimation method of
Stitelman and van der Laan (2010) will be used for estimation, which in addition to allowing
confounding adjustment can correct for potential bias due to covariate-dependent censoring.

7.3.2 Secondary analyses

Secondary analyses of vaccine efficacy will consider four subgroups of the MITT population:

1. The Week 28+ population, those on-study on Day 196 and HIV-negative (i.e., not yet
diagnosed as infected) prior to that;

2. The Week 28+ population who received rAd5/FFB;

3. The Week 28+ population who did not receive rAd5/FFB; and

4. (Per-protocol) the Week 28+ population who received all four immunizations with
correct product administration and within visit windows.

The subgroups will help to address whether and how vaccine efficacy depends on the rAd5
vaccination. For each subgroup analysis, both VE(24) and VE over all available follow-up
time will be evaluated. The methods described in Section 7.3.1 will be used for VE estimation
for each subgroup and for each follow-up period.

For the analysis of per-protocol (PP) vaccine efficacy, the method of Gilbert, Shepherd,
and Hudgens (2013) will additionally be used to assess causal per-protocol vaccine efficacy
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among subjects per-protocol under both vaccine and placebo assignments. The method will
yield estimated ignorance intervals, 95% estimated uncertainty intervals, and p-values for
whether per-protocol vaccine efficacy differs from zero, which account for uncertainty due to
partial non-identifiability of the causal vaccine efficacy parameters of interest as well as due
to sampling variability.

Additional secondary analyses will assess the possibility of confounding by time-dependent
variables. Specifically, if there is evidence of imbalance in the distribution of the two vari-
ables comprising the behavioral risk score between treatment arms over time, we will perform
an analysis that adjusts for time-dependent predictors of HIV-1 infection risk. To evaluate
evidence of imbalance, a logistic generalized estimating equations (GEE) model with ex-
changeable working correlation will be fit for the two risk behavior variables. We define
evidence of imbalance between treatment arms as a two-sided p-value of less than 0.05 for
the generalized Wald test of no difference between arms at any point in time, for either
risk behavior variable. If this criterion is triggered, we will consider including the following
time-dependent variables in the Cox model for estimating vaccine efficacy: a time-dependent
version of the behavioral risk score, time-dependent indicators of STIs (gonorrhea, chlamy-
dia, syphilis, and HSV if available), and time-dependent indicators of prophylactic ARV
use as measured by questionnaire. The choice of time-dependent variables to include will
be made based on data availability and evidence of association between the variables and
HIV-1 infection risk.

7.4 Exploratory Endpoint 1 (Viral load at HIV-1 diagnosis)

The distribution of pre-ART VL at diagnosis will be compared between treatment arms using
a Wilcoxon rank sum (WRS) test. It is anticipated that the rate of missing VL endpoints
will be very small, and therefore a “complete case” analysis will be performed. If, however,
the rate of missing endpoints is greater than 10% the robust likelihood-based method of
Little and An (2004), described below for completeness, will be implemented. The version
of the method that also allows for post-randomization selection bias may also be employed
if there is evidence of a vaccine effect on the VL endpoint using the WRS test.

The robust likelihood-based method of Little and An (2004) was chosen because it is designed
to minimize potential bias in the analysis that could occur due to missing VL endpoint data.
Under plausible assumptions it will provide unbiased inferences if the missing endpoint data
are missing at random (MAR).

It is possible that the Little and An method will provide unstable estimation. In the event of
unstable estimation, then other methods for dealing with missing VL data would likely also
be unreliable. In this case VL endpoint will be compared between treatment groups using a
difference in sample averages among subjects with observed VL values, with 95% confidence
interval and p-value based on the standard t-statistic.

We now describe how the Little and An method will be used in detail. The method is de-
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scribed for a generic post-infection endpoint, Yp. Only a subset of MITT infected subjects
will contribute a value Yp; subjects who dropped out or initiated ART prior to Yp measure-
ment would not contribute values. Inferences about Yp apply to a population where ART is
not prescribed before Yp measurement. Implementation of the method simplifies for Yp mea-
sured at the time of HIV-1 infection diagnosis; for these endpoints no other post-infection
data are incorporated into the analysis.

7.4.1 Additional notation

Let Z be vaccination assignment (Z = 1, vaccine; Z = 0, placebo) and let X be a q−vector
of baseline covariates and pre-infection covariates fully observed for everyone. Let S be the
indicator of whether a subject is diagnosed with HIV infection during the follow-up period.
Note that for the analysis of the Week 28+ Infected Population, we define S to be 0 if a
subject’s diagnosis date is before Day 196; whereas for the analysis of the MITT Infected
Population, S = 1 for all MITT Infected subjects.

Subjects experiencing S = 1 are subsequently evaluated at V visits, where variables Y1, · · · , Yn1

are collected at visit 1 (visit 1 is the diagnosis date), variables Yn1+1, · · · , Yn1+n2 are collected
at visit 2, and so on, with variables Y∑V −1

i=1
ni+1

, · · · , Yp collected at visit V , where p =
∑V

i=1 ni.

The entire collection of p variables measured after S = 1 is Y ≡ (Y1, · · · , Yp)
′, where Yp is

the outcome variable of interest. For j = 1, · · · , p, let Mj be the indicator of whether Yj is
missing, and set M = (M1, · · · ,Mp)

′. The variables Y are only meaningful if S = 1; therefore
for uninfected subjects (i.e., S = 0) we set Y ≡ ∗ and M ≡ ∗.

Each participant has potential infection outcome S(1) if assigned vaccine and S(0) if as-
signed placebo. For Z = 0, 1, the potential outcomes Y (Z) ≡ (Y1(Z), Y2(Z), · · · , Yp(Z))

′

and M(Z) ≡ (M1(Z),M2(Z), · · · ,Mp(Z))
′ are defined if S(Z) = 1; otherwise Y (Z) ≡ ∗ and

M(Z) ≡ ∗. With µz ≡ E(Yp(z)|S(0) = S(1) = 1) for z = 0, 1, the average causal effect
(ACE) estimand of interest is ACE ≡ µ1 − µ0. The goal of the primary analysis and the
sensitivity analysis is to estimate the ACE based on assumptions and the observed iid data
(Zi, Xi, Si,Mi, Yi), i = 1, · · · , N .

7.4.2 Assumptions for the primary analysis and for the sensitivity analysis to
post-randomization selection bias

Throughout we make the following three identifiability assumptions.

A1: Stable Unit Treatment Values Assumption (SUTVA) (Rubin, 1978)

A2: The treatment assignment Z is independent of (X,S(0), S(1),M(0),M(1), Y (0), Y (1))

A3: For infected subjects (with S = 1), the missing data mechanism for Y is missing at
random (MAR).
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For subjects with S = 1, let Yobs denote the components of Y that are observed, and Ymis

denote the components of Y that are missing. Let f be the conditional cdf of M given
Y and S = 1, f(M |Y, S = 1, ν), where ν denotes unknown parameters. MAR states that
missingness depends only on the observed values Yobs, i.e.,

f(M |Y, S = 1, ν) = f(M |Yobs, S = 1, ν) for all Ymis, ν.

7.4.3 Primary analysis and sensitivity analysis

The primary analysis will use the method of Little and An (2004), hereafter LA, to estimate
the ACE, under A1-A3 and the additional assumption of no post-randomization selection
bias. Because this method is a special case of the method used for the sensitivity analysis,
we describe the sensitivity analysis method, and note the special case that corresponds to
the primary analysis. The LA method was applied to data from the Step and VaxGen trials
and validated in simulations by Gilbert and Jin (2010).

Allowing for possible post-randomization selection bias, the sensitivity analysis postulates
additional assumptions that identify the ACE and are indexed by fixed sensitivity param-
eters. Following Jemiai and Rotnitzky (2005), we suppose three models, which we refer to
collectively as A4:

g0(Pr(S(1) = 1|S(0) = 1, Yp(0) = y) = α0 + β0y (1)

g1(Pr(S(0) = 1|S(1) = 1, Yp(1) = y) = α1 + β1y (2)

Pr(S(0) = 1|S(1) = 1) = ϕ, (3)

where g0 and g1 are known invertible link functions whose inverses are continuous in α0

and α1; α0 and α1 are unknown parameters to be estimated; and β0, β1, and ϕ are known
sensitivity parameters that are varied over plausible ranges. The sensitivity analysis will
use logit links g0 and g1, in which case β0 is interpreted as the difference in the log odds of
infection in the vaccine group given infection in the placebo group with y versus y − 1; and
β1 is interpreted similarly reversing the role of vaccine and placebo. The sensitivity analysis
will vary β0 and β1 over the ranges [−1.10, 1.10], which allows for odds ratios as much as
3-fold divergent from 1.0 (1.0 specifies no selection bias).

The parameter ϕ is interpreted as the probability that a subject infected in the vaccine group
would also be infected in the placebo group. Setting ϕ = 1 specifies the so-called ‘monotonic-
ity assumption,’ that the vaccine does not increase the risk of infection for any subject. If the
observed data on HIV infection rates support monotonocity (with an estimated hazard ratio
(vaccine/placebo) of HIV infection less than or equal to 1), then the sensitivity analysis will
be performed with ϕ = 1. Otherwise, the sensitivity analysis will include values of ϕ < 1. In
particular, following the example described in Gilbert and Jin (2010), we will vary ϕ between
ϕL and 1.0, where ϕL is set to two minus the upper 95% confidence limit for the hazard ratio
(vaccine/placebo) of HIV infection. For example, if the upper 95% confidence limit for the
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hazard ratio is 1.25, then setting ϕ = 2− 1.25 = 0.75 assumes that a vaccinated subject who
becomes infected would have a 25% chance of avoiding infection had he/she been assigned
placebo, which specifies a 25% plausible elevation of infection risk in the vaccine group.

The primary analysis is obtained by using logit links for g0 and g1 and by setting β0 = β1 = 0
and ϕ = 1. If the data do not support monotonocity (with an estimated hazard ratio
(vaccine/placebo) of HIV infection greater than 1), instead the assumption will be made
that the vaccine does not decrease the risk of infection for any subject; this corresponds to
assuming β0 = β1 = 0 and ϕ = p0/p1 where pz ≡ Pr(S(z) = 1) for z = 0, 1.

7.4.4 Estimation of the ACE (given fixed values of β0, β1, ϕ)

Let θ ≡ (p0, p1, α0, α1, µ0, µ1)
′. Then, as shown in Gilbert and Jin (2010), an unbiased

estimating equation is given by
N∑
i=1

UM
i (θ) = 0,

where
UM
i (θ) = (UM

1i (θ), U
M
2i (θ), U

M
3i (θ), U

M
4i (θ), U

M
5i (θ), U

M
6i (θ))

′

and

UM
1i (θ) = (1− Zi)(p0 − Si) (4)

UM
2i (θ) = Zi(p1 − Si) (5)

UM
3i (θ) = (1− Zi)Si

{[
(1−Mpi)g

−1
0 (Ypi;α0, β0) +MpiÊi[g

−1
0 (Yp;α0, β0)]

]
− ϕ

p1
p0

}
(6)

UM
4i (θ) = ZiSi

{[
(1−Mpi)g

−1
1 (Ypi;α1, β1) +MpiÊi[g

−1
1 (Yp;α1, β1)]

]
− ϕ

}
(7)

UM
5i (θ) = (1− Zi)Si

{
µ0 −

[
(1−Mpi)Ypig

−1
0 (Ypi;α0, β0) +MpiÊi[Ypg

−1
0 (Yp;α0, β0)]

] p0
ϕp1

}
(8)

UM
6i (θ) = ZiSi

{
µ1 −

[
(1−Mpi)Ypig

−1
1 (Ypi;α1, β1) +MpiÊi[Ypg

−1
1 (Yp;α1, β1)]

] 1
ϕ

}
, (9)

where
Êi[h(Yp)] ≡ Ê[h(Yp)|Y ∗

1i, X2i, · · · , Xqi, Y1i, · · · , Y(p−1)i, Si = 1, Zi]

for a function h(·), and

Y ∗
1i = logitP (Mpi = 0|X1i, . . . , Xqi, Y1i, . . . , Y(p−1)i, Si = 1, Zi)

is the logit of the propensity score for Ypi to be observed for an infected subject.

We will use Gilbert and Jin’s (2010) procedure for obtaining the predicted values Êi[h(Yp)]
(described in more detail next), which fully specifies the equations and allows calculation of
a solution.
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7.4.5 Calculation of the fitted values for HVTN 505

Participants who drop out or initiate ART prior to Yp measurement, or who have no VL
measurement at the visit(s) used to calculated Yp, have Yp missing. We use Little and
An’s (2004) penalized spline propensity prediction method to predict Yp for subjects with
missing data, and to build the model for whether Yp is observed for infected subjects. This
implementation breaks down into three steps.

Step 1: We factor P (Mp = 0|S = 1) as the probability of having Yp measured conditional
on not starting ART and not dropping out before Yp measurement; multiplied by one minus
the probability of starting ART before Yp measurement conditional on not dropping out
before Yp measurement; multiplied by one minus the probability of dropping out before Yp

measurement. Three logistic regression models will be fit for each of the three components,
for the dichotomous outcomes having Yp measured, starting ART before Yp measurement, and
dropping out before Yp measurement, respectively. Each model will relate the dichotomous
outcome to covariates within the set (X1, · · · , Xq, Y1, · · · , Yp−1)

′. Multiplying together the
fitted values from the three models yields estimated propensities Ŷ ∗

1 for all subjects with
S = 1. We will use an automated all-subsets model selection procedure to determine each
of the three logistic regression models, with BIC as the criterion for the best model.

For each model, the baseline and pre-infection covariates (X1, · · · , Xq) to consider are the
baseline variables age, behavioral risk score, race/ethnicity, HSV-2 serostatus, number of
priming vaccinations (DNA or DNA placebo) received prior to infection diagnosis, and
whether the boost vaccination (rAd5 or rAd5 placebo) was received prior to infection diag-
nosis. In addition, the post-infection covariates (Y1, · · · , Yp−1) to consider are the calendar
time of infection diagnosis (tertiles are quartiles), whether a subject has a pre-seroconversion
HIV PCR positive sample, the pre-ART CD4+ T cell counts and viral loads before Yp mea-
surement, the squares of these VL and CD4 variables, any VL > 100,000 and any CD4 < 500
before Yp measurement, and their 2-way interaction terms. The model-building will be done
using an automated procedure, to ensure objectivity of the analysis. The CD4 variables will
be analyzed on the square-root scale.

For the analysis of endpoints at HIV-1 infection diagnosis, only baseline and pre-infection
covariates will be considered.

Step 2: Secondly, a spline regression model of Yp on Ŷ ∗
1 is fit using subjects for whom Yp is

observed. We use 10 equally spaced fixed knots and a truncated linear basis, although some
adjustment in the number of knots may be needed to obtain a good fit. In addition, covariates
among (X2, · · · , Xq, Y1, · · · , Yp−1) that predict Yp will be entered into the regression model
using a linear additive parametric model. An automated all-subsets linear regression model
selection procedure will be used to select the best model (with criterion BIC for optimality),
considering the same covariates as considered for Step 1. Based on this fitted model, the
value E[Yp|Y ∗

1 , X2, · · · , Xq, Y1, · · · , Yp−1, S = 1, Z = z] is predicted for each subject with
SMp = 1 using his or her estimated propensity Ŷ ∗

1 and other covariates.
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In more detail, we replace one of the potential predictor variables, sayX1, by Y
∗
1 , and suppose

(X2, · · · , Xq, Y1, · · · , Yp−1|Y ∗
1 , S = 1, Z = z) ∼ N((sXz2(Y

∗
1 ), · · · , sXzq(Y ∗

1 ), s
Y
z1(Y

∗
1 ), · · · sYzp−1(Y

∗
1 )),Σz),(10)

(Yp|Y ∗
1 , X2, · · · , Xq, Y1, · · · , Yp−1, S = 1, Z = z, γz) ∼ N(sYzp(Y

∗
1 ) + rz(X

∗
1 , · · · , X∗

q , Y
∗
1 , · · · , Y ∗

p−1, γz), σ
2
z),

for z = 0, 1, where for j = 2, · · · , q sXzj(Y
∗
1 ) = E(Xj|Y ∗

1 , S = 1, Z = z) is a spline for the
regression of Xj on Y ∗

1 where X∗
j = Xj − sXzj(Y

∗
1 ); and for j = 1, · · · , p − 1, sYzj(Y

∗
1 ) =

E(Yj|Y ∗
1 , S = 1, Z = z) is a spline for the regression of Yj on Y ∗

1 , where Y ∗
j = Yj − sYzj(Y

∗
1 ).

Furthermore for z = 0, 1 rz is a parametric function with unknown parameter vector γz
that satisfies rz(Y

∗
1 , 0, · · · , 0, γz) = 0 for all γz. For subject i in group z with SiMpi = 1,

the predicted value of Yp is obtained as Êi[Yp] = ŝYzp(ŷ
∗
i1) + rz(x̂

∗
i1, · · · , x̂∗

iq, ŷ
∗
i1, · · · , ŷ∗i(p−1); γ̂z),

where x̂∗
ij = xij − ŝXzj(x̂

∗
i1), ŷ

∗
ij = yij − ŝYzj(ŷ

∗
i1), ŝ

X
zj denotes the sample estimate of the spline

sXzj, ŝ
Y
zj denotes the sample estimate of the spline sYzj, xij is the realization of Xij, and yij is

the realization of Yij. For z = 0, 1 we will use the linear function

rz(X
∗, γz) = γT

z X
∗,

where X∗ denotes the set of covariates (X2, · · · , Xq, Y1, · · · , Yp−1) that are selected for the
best-fitting linear regression model for predicting Yp.

Step 3: Thirdly, fitted values Êi[g
−1
z (Yp;αz, βz)] and Êi[Ypg

−1
z (Yp;αz, βz)] are computed

using these regression fits and numerical integration. Specifically, using (10), we take

Êi[g
−1
z (Yp;αz, βz)] =

∫
g−1
z (y;αz, βz)

1

σ̂z

dΦ([y − Êi[Yp]]/σ̂z),

where Φ is the cumulative cdf of the standard normal distribution. The predicted value
Êi[Ypg

−1
z (Yp;αz, βz)] is computed similarly using numerical integration.

The three steps are done for the vaccine and placebo groups separately.

7.4.6 Computational algorithm for estimating the ACE

As detailed in Gilbert and Jin (2010), the estimate ÂCE = µ̂1 − µ̂0 is computed with the
following steps.

Step 1: Estimate p0 by solving
∑N

i=1 U
M
1i (p0) = 0 and estimate p1 by solving

∑N
i=1 U

M
2i (p1) =

0.

Step 2: Plug p̂0 and the fitted values Êi[g
−1
0 (Yp;α0, β0)] into (6) and solve for α0 in∑N

i=1 U
M
3i (α0) = 0 with a one-dimensional line search. Similarly plug p̂1 and the fitted

values Êi[g
−1
1 (Yp;α1, β1)] into (7) and solve for α1.
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Step 3: Plug the estimates of p0 and α0 and the fitted values Êi[Ypg
−1
0 (Yp;α0, β0)] into (8)

and solve
∑N

i=1 U
M
5i (µ0) = 0 for µ0. Similarly solve

∑N
i=1 U

M
6i (µ1) = 0 for µ1.

Under the monotonicity assumption (i.e., ϕ = 1) the computational algorithm is the same
except that the second part of Step 2 is omitted (α1 is no longer relevant) and UM

6i (θ) is
replaced with

UM
6i (θ) = ZiSi

{
µ1 −

[
(1−Mpi)Ypi +MpiÊi[Yp]

]}
.

7.4.7 Standard errors and confidence intervals

We use the bootstrap to obtain standard error estimators for ÂCE and confidence intervals
for ACE. Within each treatment group Z = z separately, B bootstrap data sets are con-
structed by sampling with replacement Nz realizations of (Xi, Si,Mi, Yi)|Zi = z, z = 0, 1.
The ACE is estimated as described above for each bootstrap data set. Then standard er-
rors for µ̂0, µ̂1, and ÂCE are estimated by the sample standard deviations of the bootstrap
estimates, and (1 − α) × 100% confidence intervals are obtained as the α/2 and 1 − α/2
percentiles of the bootstrap estimates.

7.4.8 Handling monotonely missing post-infection covariates

We have described the above method for the case that all infected subjects have complete
data on the variables X1, · · · , Xq, Y1, · · · , Yp−1 used to predict Yp or to predict whether Yp

is observed. If more than 20% of infected subjects have an important predictor missing,
then we will implement a version of the method that allows a monotone pattern of missing
data (i.e., that Yj+1, · · · , Yp are missing for all subjects for whom Yj is missing), using the
approach of Little and An (2004). Specifically, the propensity spline model (10) can be
applied sequentially to each block of missing values. By replacing missing values of covariates
by the predicted values in sequential regression models, estimates Êi[g

−1
z (Yp;αz, βz)] and

Êi[Ypg
−1
z (Yp;αz, βz)] in equations (6)–(9) can be computed, and the resulting estimating

equations
∑N

i=1 U
M
i (θ) = 0 can be solved for θ.

7.4.9 Secondary biological activity analyses of post-infection endpoints

Selection bias sensitivity analysis. A sensitivity analysis will be used to produce point and
95% confidence interval estimates of the ACE under a range of assumptions about potential
selection bias resulting from the analyzed subgroups, as described above.

Analysis using only Week 28+ infections. A secondary analysis will evaluate the vaccine
effect on post-infection endpoints among only Week 28+ infections, by excluding those in-
fections that occur before Day 196. The analysis will use the method of Little and An (2004)
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to estimate the ACE, under A1-A3 and the additional assumption of no post-randomization
selection bias.

7.5 Exploratory Endpoint 2 (CD4+ T Cell Counts, ART Initia-
tion, HIV-1 Related Clinical Events)

7.5.1 CD4+ T cell count at Week 2 post-diagnosis

The LA method will be applied to assess the vaccine effect on the pre-ART CD4+ cell count
at Week 2 PD. The LA method is used so as to attempt to provide unbiased inferences,
accounting for the loss of evaluable endpoints due to ART initiation or dropout. If the
analysis suggests a vaccine effect, then the sensitivity analysis methods described above in
Section 7.4.3 will be applied to evaluate the robustness of the vaccine effect. Participants
using prophylactic ARVs near the time of HIV-1 infection will be evaluated separately.

7.5.2 Time to ART Initiation

The vaccine effect on the time between infection diagnosis and ART initiation will be eval-
uated with a Cox proportional hazards model. Participants initiating ART before Week 10
PD will be censored at time of ART initiation. If the analyses suggest there may be vaccine
effects, then additional sensitivity analyses may be performed accounting for the possibility
of post-randomization selection bias, using the method of Shepherd, Gilbert, and Lumley
(2007).

7.5.3 Time to HIV-1 Related Clinical Events

The same method as used for the analysis of the time to ART initiation endpoint will be
used, where the failure event is defined as the first event of any documented AIDS-defining
condition in the CDC 2008 definition (listed in Appendix A of Schneider et al., 2008) or
death (from any cause). Other disease progression related events (such as cardiac, hepatic,
renal, metabolic, and non-AIDS malignancies) will be catalogued and analyzed in a similar
fashion, should the number of these events be sufficient for analysis.

7.6 Exploratory Endpoint 3 (HIV-Specific and rAd5-Specific Im-
mune Responses)

Data from the IFN-γ ELISpot assay will be summarized for each treatment group using
geometric means and percentages of subjects with a positive response (using the standard
HVTN method for calling a positive response). Analogous summaries will be provided for
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data from the ICS assay. If assay data are qualitative (i.e., positive or negative) then analyses
will be performed by tabulating the frequency of positive response for each assay by group
at each time point that an assessment is performed. For the vaccine group, crude and net
binomial response rates will be presented with their corresponding exact 95% confidence
interval estimates. Net response rates are calculated by subtracting the placebo response
rate (i.e., false positive rate) from the vaccine response rate. For the placebo group, the
crude binomial response rate and exact 95% confidence interval estimates will be presented.
These immunogenicity results will be used to demonstrate that the vaccine is immunogenic
in the study population.

7.7 Exploratory Endpoint 4: (Host Genetics)

The HLA alleles of all subjects in the MITT Infected Population, and possibly for subjects in
the Immunogenicity Subcohort, will be measured. Subjects will be classified into one of three
HLA groups defined by “protective”, “neutral” and “unfavorable” alleles. This definition
will be developed based on the literature on the relationship between HLA alleles and HIV
progression prior to the final analysis. It is expected that the definition will be very similar
to that used for the Step trial.

Analysis of post-infection endpoints. For each post-infection endpoint, we will use the anal-
ysis method specified above to assess whether the HLA group predicts the endpoint, and
whether HLA group modifies the vaccine effect on the endpoint (interaction test). For the
univariable endpoints such as pre-ART viral load, the interaction test will be based on a
2 degree of freedom generalized Wald test. For the time-to-event post-infection endpoints
such as ART initiation, the interaction test will be based on a 2 degree of freedom partial
likelihood ratio test in the Cox model.

7.8 Exploratory Endpoint 5 (HIV-1 Genetics)

The sieve analysis will be conducted using updates of the methods that were used for the
Step (Rolland et al., 2011) and RV144 HIV vaccine efficacy trials. The sieve analysis plan
will be finalized before conducting the sieve analysis.

7.9 Exploratory Endpoint 7 (Prophylactic ARV Use)

The sampling plan for measuring ARV drug use in plasma specimens will be determined based
on the self-reported prophylactic ARV use data. Specifically, if the proportion of participants
reporting use at any point in time during follow-up is less than 5%, and absent other data
suggesting meaningful levels of use, no plasma specimens will be tested. If, however, the self-
report data suggests greater than 5% of participants have used ARVs prophylactically, the
ARV sampling plan specified in version 4 of the protocol will be applied. This plan measures
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ARV drug levels in the plasma of all MITT infected participants, participants self-reporting
use, and a random sample of participants not reporting use.

Using these data, an analysis will be performed to determine whether there is evidence that
the vaccine effect on HIV-1 acquisition depends on prophylactic ARV use. A time-dependent
“ARV use” variable will be defined as an indicator of detectable plasma drug levels as a
function of time since enrollment. Here and henceforth, self-reported ARV use data will be
used in the absence of plasma drug level data. Note that ARV use is only measured in a
subset of participants and at selected time points; the subset of participants with ARV use
measured constitute a stratified case-cohort sample from the trial population. We will use the
weighted likelihood method of Li, Gilbert and Nan (2008) to accommodate the case-cohort
sampling. The method uses a weighted likelihood approach to fit a Cox proportional hazards
regression model to grouped survival data with stratified case-cohort sampling. We will use
the version of the method that uses estimated weights, representing the stratum-specific
(inverse) sampling fractions, since this improves efficiency. The covariates in the proportional
hazards model will be vaccination assignment (vaccine vs. placebo), the time-dependent ARV
use variable, and an interaction between ARV use and vaccination assignment. Since we will
be missing full ARV use history on most subjects in the case-cohort sample, we will fill in the
missing data in the following fashion. The goal is to generate complete ARV use data from
the time of enrollment to HIV-1 infection or censoring. If a participant is selected for ARV
assessment at a given visit and tests negative at the previous visit, all earlier visits until the
previous ARV assessment will be considered negative. Similarly, going forward in time, once
a participant tests negative at two consecutive visits, ARV use at all subsequent visits until
the next ARV assessment, HIV-1 infection, or censoring will be set to negative. We may also
explore a multiple-imputation approach to filling in the missing ARV use data; the Li et al.
(2008) method was developed to handle missing covariate data using multiple imputation.
A Wald test will be used to evaluate whether the vaccine effect on HIV acquisition differs
according to ARV use.

We will also study the extent to which the vaccine effect on VL endpoints depends on
prophylactic ARV use. Note that, because the VL analysis is conducted among HIV-1
seroconverters only, there is not a missing data problem as described above for the HIV
acquisition endpoint. Specifically, we will have ARV use measured at the time of HIV
diagnosis for all MITT infected participants. To study this question, we will reproduce the
primary analysis of the VL endpoint, using the Little and An method, and in addition to
vaccination assignment we will include as predictors an indicator of ARV use at the time of
diagnosis and an interaction between vaccination assignment and ARV use. A Wald test will
be used to test for an interaction between vaccination assignment and ARV use. A secondary
analysis may be conducted in which we consider ARV use at the visit with earliest evidence
of infection, rather than at the diagnosis visit.
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8 Monitoring of Trial

The study will be monitored, potentially leading to modification or termination of the study.
Interim analyses will occur every 6 months, with the first analysis scheduled for approxi-
mately September, 2014. The results of the interim analyses will be shared in a report to
the Oversight Group that will keep the results confidential.

Interim analysis reports will include point estimates, 95% confidence intervals, and 2-sided

p-values testing H0: VE = 0% will be reported for VEMITT(24) and for VEMITT(t) for the
latest available time point t. These parameters will also be estimated and tested for the four
subgroups defined in Section 7.3.2. Point estimates and 95% confidence intervals will also
be reported for dropout rates over study time and for pre- and post-unblinding follow-up
periods. Results will be shown overall and separately by treatment arm. Two-sided p-values
testing for a difference in dropout rates between treatment groups will also be reported,
separately for pre- and post-unblinding periods.
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